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LENNARD-JONES MOLECULES

II. DEVIATIONS FROM RANDOM MIXING
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This paper describes a new statistical treatment of ordering effects in mixtures of spherical mole-
cules, based on a general expansion of the Helmholtz free-energy function about the condition of
random mixing. This expansion is similar to that introduced by Kirkwood (1938) for lattice
theories, but unlike the latter is based only on the canonical distribution of petit ensemble theory.
It is shown that for mixtures of Lennard-Jones molecules the moments in the expansion can be
reduced to non-thermodynamic statistical functions of a single reference substance; and by using
the assumptions of the cell model, these functions are related to thermodynamic properties. The
first approximations for the thermodynamic functions of ordering are discussed for a certain
class of mixtures, and it is shown that although ordering effects are small in mixtures of molecules
of equal size, they can be large when the molecules differ in size. The equations are used to calcu-
late the ordering effects in liquid mixtures of carbon monoxide and methane.

1. INTRODUCTION

The treatment of mixtures presented in part I was based on the assumption that the
random-mixing approximation leads to an adequate description of the thermodynamic
properties of simple mixtures. This assumption seems credible to one’s physical intuition,
and is supported to some extent by the results obtained by the lattice theories of mixtures.
It has been shown by Rushbrooke (1938) and others on the theory of strictly regular solu-
tions, and by Prigogine & Garikian (1950) and Salsburg & Kirkwood (1952) on the cell
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222 W. B. BROWN ON THE

theory of solutions, that deviations from random mixing have comparatively small effects
on the propertiesof mixtures at temperatures above those at which critical mixing can occur.
However, these demonstrations begin by assuming a lattice structure for the liquid state,
and are therefore effectively limited to mixtures of molecules of equal size. This is a severe
limitation, since the very case in which reflexion suggests that departures from a random
distribution might be important is that in which the molecules differ in size; this is evident
on considering the packing of solid spheres of different radii.

There is therefore a need for a broader treatment of the order-disorder problem, which
avoids as far as possible a model for the liquid state and is not restricted to mixtures of
molecules of equal size. The object of this paper is to show that such a treatment is made
possible by the definition of random mixing appropriate to ensemble theory which was
introduced in part I. This treatment consists of a general expansion of the Helmholtz free-
energy function of a mixture about the condition of random mixing. The expansion is
similar to that first applied by Kirkwood (1938) to strictly regular solutions, but unlike
the latter is based only on the canonical distribution, and involves no assumptions con-
cerning the structure of condensed matter. However, the statistical functions involved in
the expansion cannot in general be obtained from thermodynamic properties, and it is
therefore necessary to introduce approximations in order to determine their behaviour.

2. GENERAL EXPANSION OF THE HELMHOLTZ FREE-ENERGY FUNCTION

In the statistical method based on the petit canonical ensemble of Gibbs (1go2), the
Helmbholtz configurational free-energy function F( T, ¥V, x) of a multi-component system of
N spherical molecules containing N, molecules of component 1, N, molecules of component
2, ..., and N, molecules of component ¢, is given in terms of the total potential energy func-

tion, #(Q), by exp(—/{—;: )= N_ITM}_Ni fexp(_.%,)dQ, (21)

where the integral is over all configurations @ of the N molecules within the volume ¥V
to which the system is confined. The random-mixing approximation, introduced in §3
of part I, consists in replacing the actual potential-energy function % (Q) by its average value,
(% (Q)), over the N! assignments of the molecules to the N positions of every geometrical
configuration @. The configurational free-energy function for a random mixture, which
we shall denote by FO(T, ¥, x), is therefore given by the equation

exp (—%) = mfexp (-—%Z/Tz)dQ. (2-2)

In this case the distribution of the systems of the ensemble may be said to be ‘random-
canonical’ in configuration, to distinguish it from the true canonical distribution of
equation (2-1). It should be noticed that this differs from an ensemble of systems which is
random-canonical in phase; that is, one in which the phase distribution function is propor-
tional to exp (—(#)/kT), where # is the Hamiltonian function for a system.
From equations (2-1) and (2-2) we find that
F—(u ))

exp (FZ;F) -/ Coxp ((”%k)]:— %)> ej;l) v(z\@,va AR (2:3)
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where, for convenience, we have averaged the integrand over all molecular assignments,
as indicated by the angle brackets. We may remark that it already follows from equation
(2-3) by a general theorem proved by Gibbs (19o2), that F'is less than F°, and it can also be
seen that F approaches F° as the temperature is raised, in agreement with intuition. By
expanding the first exponential in the integrand of equation (2:3) we get

FO—F\ = 1 /{Uy—2\™N
e (7 )= k) ) (24)
where the bar denotes the average value of a function in a petit random-canonical en-
semble. This equation can be regarded as a power series for the function exp {(F'—F)/kT?}
in the parameter (1/£T"), and resembles the expansion of a moment-generating function
in statistical mathematics; the ‘moments’ of the function are

M=<(<%>_%)n> (fl=0, 1a2:'°')'

A similar type of series can be derivéd from (2-4) for the difference (¥ — F°), which we shall
call the free energy of ordering, and may be written in the form '

F—Fo— ~m“§117;—';'(,—€17)¢;,1. | (2:5)

This series resembles the expansion of a so-called cumulant-generating function in statis-
tical mathematics (see Aitken 1947). The ‘cumulants’ K,, are related to the moments M,
by the linear equations ' '

o n—1Y\ ., ) '
M’f:mzl(m——l)M"",’”Km (r=1,2,...), (2-6)

which may be derived from the series (2-4) and (2-5) by d‘iﬂ'ei‘entiating with respect to
(1/kT), and setting T'=oo. It is not possible to give explicit general expressions for the
cumulants in terms of the moments; the first few cumulants are found from (2:6) to be

K, =M,
K, = M,— M3, (2-7)
Ky = My—3M, M, +2M3.
Since the first moment, M}, vanishes, these equations reduce to
K, =0,
K, M, = (@@, 9
Ky = M, — — (@S — 0y T 2HY).

We shall not attempt to discuss the complete expansion (2-5) in this paper; but instead
we shall assume that the series converges in all cases of interest, and devote our attention

to the leading term, involving the second moment M,.

3. GENERAL EXPANSION OF THE GIBBS FUNCTION
We now turn to consider the corresponding expansion of the Gibbs function, G(T,, P, x),
about that for random mixing, G°( T, P, x) ;1 this expansion is more important than that of
+ This function is denoted by G(T,, P, x) in part I, and must not be confused with the Gibbs function for

an jsotopic reference mixture which occurs in §11 of part I, and is denoted there by the same symbol G°.

28 VoL. 250. A.
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the Helmholtz free-energy function from a practical point of view, since most experimental
work on liquid mixtures is done at constant temperature and pressure. Unfortunately,
there is no straightforward statistical method giving the Gibbs function directly in terms
of the mechanics of the system with 7, P, x as the appropriate independent variables.
However, it is possible to give a systematic series expansion of a thermodynamic nature, by
which the Gibbs free energy of ordering at constant temperature and pressure,

G(T,P,x)—G(T,P,x),
can berelated to the Helmholtz free energy of ordering at constant temperature and volume,
F(T,V,x)—F(T,V,x),
and its volume derivative; the first term of this series is discussed by Hildebrand & Scott
(1950).

Since the temperature 7" and composition x are the same in both functions, we shall
temporarﬂy omit all further reference to them. The problem then is to relate

G(P)—GP) to F(V)—FV),

wh’efe P is the pressure of the acfual (canonical) system at T, V, x. Since
G(P) = F(V)+PV,
and GO(P%) = Fo(V)+ PV,
where P? is the pressure of the random system at T, V, x, we have
G(P) —GO(P%) = F(V)—FO(V) + V(P—PY),

or G(P)—GP) = F(V)—F°(V) 4 V(P—P%) —{G°(P) — G°(P°)}. (3-1)
The last term in brackets in this equation can be replaced by the Taylor-series expansion
of G°(P) about G°(P?), which is
| o) -eopr) = 3 =

- n=1 72'

(P—PO)n (an

) 0 (3-2)

since P is the pressure of the random system when its volume is ¥, the first two coefficients

are IC\ 0
(5),.. =¥

l(a?G 0

| (3-3)
m)P=Po,=“V”°<P°>’

where £? is the isothermal compressibility of the random system. By substituting the series
(3-2) into equation (3-1), and separating out the first term, we get a series of the desired
form: (P— POy (9G) 0
G(P)~Go(P) = A7) —F(7) - 5, " (37) (3-4)
. n=2 n: Pp=po

— F(V)—FO(V) + 3(P— P2 Vi +-.... (3-5)

-t Note added in proof, 17 July 1957, Such a method, based on a constant pressure ensemble, has recently
been found by the author (1957), and could have been used in both parts of this paper instead of the
usual method based on a constant volume ensemble.
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It should be pointed out that the coefficients in this series are properties of the random
system at 7, P%, x (or 7, V, x), and not at 7, P, x. We note that

(G—G)p= (F—F0)y, (3+6)
where P and V are the pressure and volume of the actual system; on the other hand, it can
easily be shown that (G—G°) po< (F—F0),<0, (3+7)

where P? and V are the pressure and volume of the random system.
The pressure difference (P—P?) is given by

d :
P—P° = —a—I—/.(F—FO), (3-8)
and can be written as a series similar to (2-5), whose leading term likewise involves (1/£T').
We see immediately from equation (3-5) that the difference between (G —G°) and (F—F?)

is of the same order as the terms in (1/£7)?in the expansion of the latter. Therefore, to the

first approximation, (G—G%), = (F—FY),. (3-9)

4. FIRST APPROXIMATION: GENERAL THEORY

We shall now examine in detail the first approximation for the change in the free energy
due to the ordering of the molecules of a mixture under the influence of the various inter-
molecular forces; and in this section we shall not make any assumptions about the form of
the intermolecular energy functions.

According to equations (2+5) and (2-8) the free energy of ordering is given by the equation

FoFo— (@%}r@iﬁ) (41)

Although the right-hand side of this equation is reminiscent of the statistical formula for a
heat capacity at constant volume, it is not possible to derive it from a free-energy function
by differentiation; it is therefore a non-thermodynamic statistical function. It is evident
from this approximation that the effect of deviations from random mixing is always to
lower the free energy, in agreement with the general theorem already mentioned. It is
also clear from this expression that, as is well known, the higher the absolute temperature
of a mixture, the more nearly does it approach the condition of random mixing. In order
to analyze the right-hand side of equation (4-1) in detail, it is first of all necessary to discuss
the form of the potential-energy function for a mixture.

The total potential energy %(Q; 7) of an assembly of N spherical molecules of various
kinds in a configuration @, described by the N position vectors Iy, Ty, ..., Ty, depends on
the assignment 7 of the N, + N, + ...+ N, molecules to the N positions. If the intermolecular
forces are additive as well as central, it may be written in the form (Longuet-Higgins 1951)

%(Q; T) z z 2 Z (T) uoc,b’( zj)a (4'2) )

where #,,(r;;) is the mutual potential energy of a molecule of species « and one of species
p at a distance r; = | r,—r; | apart, and where 0¥(7) is unity if in assignment 7 position ¢is
28-2
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226 W. B. BROWN ON THE

occupied by a molecule of species «, and position j by a molecule of species f§, and is zero
otherwise. The average value of  over the N! assignments is

(#y=2 E 2 2( 2> ap(75) (4-3)

where (0dg) = 28’1 (1)/NL. (4-4)
By a purely mathematical é.rgument it follows that

Odp) = No(Np—0,p)IN(N—1) (i), (4:5)

where d,,is the Kronecker delta, equal to unity ifa.is equal to §, and equal to zero otherwise.

Therefore (O = 35, O(1/N), (4-6)

where x, = N,/N is the mole fraction of component « in the mixture, so that when N is

very large we have @) — % % Zmz Kyt (1)- (4+7)

We note, in passing, that this completes a rigorous derivation of the equations of § 3 of part I.
We are now in a position to deal with the second moment on the right-hand side of
equation (4-1). It is convenient to begin by splitting this up as follows:

(WD — Uy = (W) —2)") — (%Y —{%)"). (4-8)

By introducing equation (4:2) for %, the ﬁrst part becomes

(@ —(@y* = § 2 Z 2323 3 (0 ulp Uil —(Bp) (O uijputh). (4-9)

i>j

Now it can readily be seen that the probability coefficients (&) satisty the following summa-
tion relation identically:

PRDRDACHICAEDIPPAC DS (4:10)
Therefore (4+9) can be re-written as
@y —(#)y = 3 223333 30 (gl —uopty.)- (411)

On introducing equation (4-2) into the other part of (4-8), we find that

@y —(uy* = ZEZZ%JEZZ( CANCTATNE (4-12)
We note that it is, of course, not possible to replace the delta probability coefficients here
by the single term of equation (4-11), because of the factors u;u%,. By subtracting (4-12)
from (4-11) we get for equation (4-8) :

@y —(ay = gE;gZ} 22 (€ U ) — Uy (OY) (Wl —upu, ). (4113)
It is now necessary to separate out the probability coeﬁiments in which ¢ =k or /, and
J =k or . This can be done as follows: we have

2 2( o) = <33,§’ye>+<32’,%’76>+§ ((%‘%)H 2{,’9’;e>+< Ier + 085 D) +2 2 (0%f7eds
(4-14)
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where the primes on the summations indicate that the terms for which % or / is equal to ¢
orj are to be omitted. The quadruple summation over positions can now be broken up into
those over pairs, triplets and quadruplets, to give

(@ —(uy* = aEEEE{( Saver —<0a) (O ))EE(u U~ Uy ptye)
+ ((02ger — %)(3%»222(%,&%6 Uy pllye)
+2(0age) —<(Bap <2 i))EEZZ(u’ﬁu’§’€ Uypilye) s (4-15)

where, for simplicity, we have replaced the posmon superscripts on the probability coeffi-
cients by the numbers 1, 2, 3, 4.

The next step is to express the delta probability coefficients in terms of the composition of
the mixture. First of all we note that

O = 0,80, (+16)
and G = 0, (1), ete. (417)

Secondly, by elementary mathematical arguments similar to those used in deriving equa-
tion (4+5), we have

afyy = Nou(Ny—08,p) (N, =04y —05,) IN(N—1) (N—2)

” = x,%5%,+O(1/N), . (4-18)
and similarly (%) = %252, %, +O(1/N).. (4-19)
Hence the probability coefficient differences occurring in equation (4-15) are given by
Iy —(313) (OR2) = 5,240,y — 5,2) +O(UN), (420)
(DILY —(PBY () = 2,53, (0,,—2) + O(1/N), (+21)
(OB — (P (32) = O(1/ ). (a-22)

We see that for macroscopic assemblies, in which N is very large, the term Wlth the quad-
ruple sum in equation (4-15) is physically entirely negligible, except possibly when phase
changes are occurring. Thcreforc, excluding this possibility, the second moment is given by

<%2> <%>2 z z z z {x xﬂ( yaﬁe_x'yxe) z z(ugﬁu;‘l’e_';a_ﬂl—t;)
+X xﬂx ( ) z z z ( s '_uocﬂu'ye)} (4.23)

In general it is impossible to simplify this expression any further, or to relate it to statis-
tical properties of a single substance. The only systems for which such a relationship exists
are those in which the various intermolecular energy functions have the well-known

Lennard-Jones form, as we shall see in the following sections.

5. MIXTURES OF LENNARD-JONES MOLECULES
In part I it was shown that the random-mixing approximation leads to particularly
simple results for mixtures of molecules interacting according to the Lennard-Jones
inverse-power potential. For this approximation such a system is thermodynamically
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equivalent to a mixture ofisotopic components (equivalent substances) whose intermolecular
energy function, u(r), is related to that of a reference substance, #y,(r), by equation (4-8),

namely, u(r) = fio(r]e), (51)
where /= f, and g = g, are functions of composition given by equations (4-9) and (4-10).
In this section we shall use the equations of § 4 of part I to show that the potentials u,4(r)
can be linearly related to the intermolecular energy, u(r), and virial, »(r), of the equivalent
substance; the latter function was introduced in § 7 of part I, and is defined by

du(r) .

o(r) =r—+ (5-2)

We begin by setting out the Lennard-Jones forms for u,,, « and v, which are
Uup = _luoc/?/ rm—,—vaﬂ/ ",
u = —ulrm+v/re, (5-3)
v = mpfrm™—ny[r".

By eliminating the two powers of r from these equations we find

vy — (ﬂﬂaﬁ/ﬂ_mVuﬂ/V) u ( VoplV— ﬂu,e//’) (5-4)

n—m

The coefficients of z and v in this equation can be expressed in terms of the conformal para-
meters by means of equations (4-5) ; the expressions are

) G ), o
(et turlt) = UeaD (Bet)" (E)") (56)
By using equation (4-2) and the conformal relations (4+4), we can show that
oy~ S () o
et G o

where r¥ = gr¥ is the distance at which the minimum of the average potential u(r) occurs.
Hence, by introducing the starred conformal parameters f,55(x) and £%,(x), defined in §8

of part I by
fo:x/‘? = uaﬂ(r;k)/u:)ko (5’9)
and By = g (r8) i (510)
we can write equation (5-4) in the form
Upp = (faﬂu_lk ’1))[f (5.11)T

t An alternative and more sophisticated derivation of (5-11) proceeds by setting r =73 in (5-4), and in
its first derivative with respect to r. Since v(r¥) = 0, this eliminates the terms in # and v successively, and the
coefficients of the latter are then obtained as in the text.
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It is this relation, which is peculiar to the Lennard-Jones form of the potential, that enables
the second moment of equatlon (4-23) to be expressed in terms of statistical functions
of a single substance.

Before proceeding to apply equation (5-11), we note that the starred conformal para-

meters must obey the relations
2 S xxpfap =S (5:12)
a g

and 2 2 x,x5kE, = 0; (513)
«f

these may be verified by multiplying equation (5-11) by x,x, and summing over all pairs
of species a, f.

6. FIRST APPROXIMATION FOR LENNARD-JONES MOLECULES

In this section we shall relate the first approximation for the free energy of ordering of
a mixture of Lennard-Jones molecules to statistical functions of the random mixture or its
equivalent substance.

The statistical quantity involved in the first approximation is the second moment given
by equation (4-23). By using equation (5-11) for u,,, we can put the intermolecular energy
functions which appear in equation (4-23) in the form

(Wbt —ugttye) = (S Solf®) (TR —7?)
— 3SR k) [ 2] (iR — i) + 3 (k Jo ko f?) (0909 —77). (6°1)
When these expressions are substituted in equation (4:23), and the relations (5-12) and
(5-13) are emp]oyed we find that equation (4-1) becomes

F—F=3F[3 Zx xp(Japlf )2 =11+ 3P 2 Zxaxpxy(ﬂi’}fa”;b’ %) —1]
‘”ZZx xp(fapkaslf?) +Fy ZZZx g%y (fapkaylf?)

+303 EZx xg(Kaglf)?+3F, k’ggyzyxaxpxy(kap k%), (6-2)
where rp--33% “"“) , /
- 35 ) o
=335
- - g(u"f—ﬁz @)
(@ —u) (v*—2) | (6-4)

3
RS
o Gkl N Caeel)

*AE kT )

This is the first approximation for the Helmholtz free energy of ordering of a mixture of
Lennard-Jones molecules. It involves quantities which are, roughly speaking, of the
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‘second order’ in differences between the intermolecular forces, as we would expect from
§ 11 of part I. The functions denoted by F2, etc., which we shall call the molecular fluctuation
integrals, are statistical properties of the random mixture or the equivalent substance. It is
evident that for mixtures of Lennard-Jones molecules the other cumulants K, in the series
(2:5) can also be expressed in terms of similar statistical properties of the equivalent
substance.

According to equation (3-9), equation (6-2) is also the first approximation for the Gibbs
free energy of ordering at constant temperature and pressure. In this case we shall regard
the molecular fluctuation integrals as functions of temperature and pressure, and denote
them by G@, etc.

Since the molecular fluctuation integrals are the unknown quantities in the free energy
of ordering, and have not been discussed previously, we shall examine their nature in the
next section.

7. MOLECULAR FLUCTUATION INTEGRALS

In the forms introduced above, the molecular fluctuation integrals are evidently statis-
tical properties of the equivalent substance for the composition x of the mixture. These
properties will therefore vary with the composition of the mixture in a manner determined
by the conformal parameters of the equivalent substance, f(x) and g(x), introduced in
equation (5:1). Throughout this section we shall suppose that the composition of the
mixture is fixed, so that we are simply dealing with statistical properties of a single sub-
stance, represented by a petit canonical ensemble. Later in the section the relations
between the molecular fluctuation integrals of an equivalent substance for any composition,
and those of the reference substance, will be given.

The set of molecular fluctuation integrals given in equations (6-3) and (6-4) is evidently
incomplete. The F) integrals (£, 7 = f, k) represent energy and virial fluctuations in pairs
of molecules, and the F}) integrals those in groups of three molecules; the set should there-
fore be completed by integrals F for fluctuations in groups of four molecules. The appro-
priate definitions are

L =)

i,7,k, 1+
Wi — ) (9 —7)

» Iy Ky I

(7-1)

v

@ _ (9 —2) (¥ —7)
FR=—2222 a1

The significance of the molecular fluctuation integrals can now be seen from the following
formulae:

2—%)*
By P+ R+ -2, (19
Fp=Fp+Fp+ B = - =077, (-9
P2
F,—=F?+FY®+F% = =) (7-4)

kT 2
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where % (Q) is the total potential-energy function for a single substance, defined by
“(Q) = 2 2 ul(ry), (7-5)
and 77(Q) is the corresponding total (mechanical) virial function, defined byt
(@) =~ Zoly) (76)

The molecular fluctuation integrals are therefore the contributions from groups of two,
three and four molecules to the fluctuations of # and 7 in the canonical ensemble. We
note in passing that
Fp<<0, Fy<0 and FFy=(Fg) (7-7)
The fluctuation quantities which we have denoted by F, Fy and F,; are related to
configurational thermodynamic properties of a single substance, and more precisely to the
second derivatives of the configurational free energy with respect to temperature and
volume. Thus P2F

Fy=T? (3 Tz) — TGy, (7-8)

where C}, is the molar configurational heat capacity at constant volume; this well-known
relation may be obtained by differentiating the configuration integral (2-1) twice with
respect to temperature (Gibbs 1902). The function Fj, is similarly related to the second
derivative of the free energy with respect to temperature and volume by

a‘;,f;V) — RT—TVajx, (7-9)
where a and « are the isobaric expansivity and isothermal compressibility coefficients. The
functions F,, and F, are therefore both related to accessible thermodynamic properties.
On the other hand F,; cannot, in general, be expressed entirely in terms of the thermo-
dynamic properties of a substance.f The nearest thermodynamic function to which it is
related is a second derivative of the free energy with respect to volume, namely

Fpo = RT+TV (577

= (VaF) P S e A1 (7-10)

av\" v kT
where #°(Q) is defined by W(Q) =53 S w(ry), (7-11)

~and w(r) is a function defined in § 7 of part I by
dv(r)

w(r) =r—-+* (7-12)

Since the statistical formulae (7-9) and (7-10) for the thermodynamic quantities 7 Va/x
and V/k are not well known, they are derived from the configuration integral (2-1) in
appendix A. The function Fy, is therefore given by

F, = Vjk—PV—W, - (7-13)

1 In part I the average value of this function in a canonical ensemble, 7" = PV—RT, is denoted simply
by 7. In this part we shall adhere to the above notation.
1 Analogous statistical but non-thermodynamic functions are discussed briefly by Gibbs (1902, p. 81).

29 Vor. 250. A.
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which is a non-thermodynamic expression, owing to the unknown average #. Fortunately,
however, for a substance composed of Lennard-Jones molecules, which is the only case
we are interested in here, the intermolecular energy u and its derivatives v and w are
identically related by the equation

w(r) + (n+m) v(r) +nmu(r) = 0, (7-14)
so that W__(n:m) V+ " — o, (7-15)
—  (n+m nm
and therefore «//f:( : )(PV—RT)_—Q—U, (7-16)

where U is the molar configurational energy. In this particular case then, the function %,
and consequently F,,, can be related to thermodynamic properties. The values of these
fluctuation quantities for the equivalent substance, F, (T,V), are related to those for the
reference substance, Fy,o( 7, V), by the law of corresponding states. Since they all have the
dimensions of energy, we have

F‘gﬂ< T’ V) :f}%ﬂO<T/j; V/h): (gafi :j; k>' (7’17)

Alternative expressions for the quantities F{2, etc., which justify the name molecular
Sluctuation integrals, may be obtained by reducing the canonical averages over all con-
figurations to integrals over the positions of two, three and four molecules. For the Fp
these expressions are

F§=—sr f f (112 —7)2 (1, 2) dr, &, (7-18)

FQ = f f f (w2 —7) (1 —7) n9(1, 2, 3) dor, dPr, d°r,, (719)

a 4/€ijff<u12_u) (% —u) n¥(1,2, 3, 4) d*r, d°r, d’rydr,, (7-20)

and similarly for the F# and F# quantities. The functions n#)(1,2, ..., p) appearing in the
integrals are the configurational distribution functions for groups of p molecules in a petit
canonical ensemble of systems each containing N molecules. These integrals can evidently
also be expressed in terms of correlation functions, or in terms of the distribution functions
appropriate to the grand canonical ensemble.

It is appropriate to mention here an interesting relation which exists between the pair
fluctuation integrals F2, F# and F2 for the particular case of molecules interacting
according to a Lennard jones potent1a1 in which the repulsive index 7 is equal to twice the
attractive index m. This relation, which is proved in appendix B, has the form

n2FP — 6nFD+9FD = (67" —n) (nu* |k T), (7-21)

where »* is the minimum interaction energy of the molecules. Since the quantities on the
right-hand side can be found from experiment without difficulty, the relation may be used
to check the accuracy of approximate expressions for the pair fluctuation integrals; we shall
use it for this purpose in the next section.
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The molecular fluctuation integrals in the form appropriate to the Gibbs free energy of
ordering, namely, G and Gg), are approximately equal in value to those for the Helmholtz
~ free energy, and need not therefore be discussed separately. The exact relations between
the two sets are

Fg])( T, V) = Gg;)( T, PO)l

Fg})( T, V) _ Gg,)(-T, PO)J (g: n =f, k)a (7'22)

where P? is the pressure of the random mixture when its volume is V. However, in a first
approximation for (G—GY) it is legitimate to replace P by P, the pressure of the actual
mixture. :

It should be clear from this section that the molecular fluctuation integrals are not con-
figurational thermodynamic properties of a pure substance, in the sense that they cannot
be derived from the configurational free-energy function by differentiation with respect to
thermodynamic variables. In the next section we shall therefore present a preliminary
attempt to calculate them from the statistical formulae.

8. MOLECULAR FLUGCTUATION INTEGRALS FOR THE CELL MODEL

The molecular fluctuation integrals represent equilibrium properties of a pure substance
which are not directly accessible to observation, and cannot in general be derived from
observable properties. In order to estimate the magnitude of the ordering effects in mix-
tures, it is therefore necessary to make use of the statistical formulae for the molecular
fluctuation integrals. At present it is not possible to calculate such canonical averages
exactly for condensed states of matter, and recourse must be had to a model which enables
approximate results to be obtained. Itisnaturally desirable to introduce as few assumptions
as possible, and to use these to relate the molecular fluctuation integrals to observable
properties of a substance, rather than to attempt to calculate them directly as functions of
thermodynamic variables. In this section we shall show that the assumptions of the simple
cell model of matter suffice to relate the molecular fluctuation integrals of a substance to
its thermodynamic properties.

In the cell model of matter, each molecule moves in a cell-like force-field due to the
molecules in the neighbouring cells, and the cell centres are arranged in a regular lattice.
The simplest theory based on this model is that developed by Lennard-Jones & Devonshire
(1937), in which it is assumed that the molecules move independently in their cells, and the
cell field is calculated by averaging over all orientations of a cage of neighbouring molecules
situated at their cell centres. Although a more general theory based on the cell model has
been developed recently by Kirkwood (1950) and others, we shall confine ourselves here
to the assumption of cellular independence; and, in addition, we shall ignore all inter-
actions except those between each molecule and its z nearest neighbours.

(a) Basic equations of the cell model

The basic equations of the simple cell theory may be presented as follows (see Fowler &
Guggenheim 1939). We consider a system of N molecules occupying a volume V at tem-
perature 7. If the distance between neighbouring cell centres on the lattice is 74, then the
volume of each cell, which we shall denote by ¢, will be proportional to ()3, and the total

29-2
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volume ¥ will be proportional to Ng (the constants of proportionality need not be specified).
The configurational Helmholtz free energy of the system is given by

F(T,V) =% (V)+Ny(T,q)— NkT, (8:1)

where % (V) is the minimum potential energy of the molecules when the volume is 7,
given in terms of the intermolecular energy function, u(r), by

Uy(V) = §Nzu(ry), (8-2)
and y(7, q) is the Helmholtz free energy of a single cell given by

j exp (?ﬁ/cT) d3s = 1. (8:3)

In equation (8:3), ¢(s; 74) is the potential energy of a molecule at a distance s from the
centre of its cell, defined by

6(s375) = 4 f "u(r) —u(ry)] sin 6d4, (8-4)
0 .
where r=/(rk —2ryscos0+s2); (8-5)

we see from these equations that the potential energy is defined to be zero when the molecule
is at the cell centre.

Equations (8:1) to (8-5) determine the configurational thermodynamic properties of
the system in terms of the intermolecular energy function and the geometry of the lattice.
Since our aim is to relate the molecular fluctuation integrals to such thermodynamic
properties, we shall now use these equations to derive expressions for the first and second
derivatives of the free energy. |

The total configurational energy is given by

(T, V) - %*(V)+N(¢ T‘M)

= %,(V)+Né, (8+6)

where ¢| is the average value of the cell potential energy in a canonical ensemble of cells;
that is,

€| ——feexp (;QT)&S (8:7)
The average total virial function for the system is
Y (T,V)=PV—RT,
— V(7 _N( yo7 +kT)
=7%(V) =4y, (8-8)

where Ye(V) =—=Vdu,/dV,
= —-%sz(f*), . (8'9)
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and #5(s; 74) is related to the cell potential ¢(s; r4) in the same way that the intermolecular
virial v(r) is related to the intermolecular energy «(r); that is,
de de
Sy Ty) =87 +Tg5—
n ( ‘ *) 35 * ar*

—1 f:[v(r)—v(r*)]sinﬁdﬁ. (8:10)

We are particularly interested in the second derivatives of the configurational free energy,
which involve the fluctuations of the cell energy and virial functions, ¢ and 7. The three
equations obtained may be written in the form

N(e—e))?|/kT = TCy, (8:11)
NE=a) G=7)|/3kT = RT— TVa/x, (812)
NG—=7)%/9kT = W+ PV—Vk. (8:13)

These formulae should be compared with those of the last section. If, as we shall assume,
the intermolecular energy function #(r) has the Lennard-Jones form, the function #° (7, V)
is related to the total configurational energy and virial by equation (7-16).

(b) Derivation of molecular fluctuation integrals

We are now in a position to derive expressions for the molecular fluctuation integrals
which are defined by equations (6-3), (6-4) and (7-1). We begin with F§2, which is given by

Fp——3s®@_0" (814)

Z>]

Since we are only considering interactions between nearest neighbours, z¥ vanishes unless
molecules ¢ and j are in neighbouring cells. Hence

FQ— ;N(N—l)kT %Nz(kj), ) (8:15)

where positions 1 and 2 are vicinal. To obtain a self-consistent treatment, the assumption
of cellular independence demands that we put

u'? = u(ry) +[e(s1) +e(s5)]/23 (8-16)

we observe that this leads to the correct form for the total configurational energy, given by
equation (8-6). We can therefore write (8:15) in the form

@ _ _1 oz \uP  (e—e])? .
FQ = gNz(1 N—-1)kT N ZkT[, (8:17)

where we have used the relations
=4{N(N—-1)a = }Nza). (8-18)

'[' The derivation of this equation involves the differentiation of the configurational cell integral (8-3)
with respect to the cell volume g. The most convenient method is that described in appendix A.
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- It follows that for large values of N we have
202 (e—e])?|
@ — :
F2 = BT N T (8-19)

The triplet function F}? is defined by
(=) (7).

3 .
Fp=-222 T (8-20)

Since there are Nz(z—1) mutually exclusive sets of three nearest neighbours, we have

@ — BT L VN e I i) .
FY = Nz(l N*l)kT Nz(z—1) o , (8-21)
where positions 2 and 3 are vicinal to position 1. By using equations (8-16) and (8-18) this
becomes
4U? c—¢l)?
Fp =22 N1 _Z) Geti) ) (8-22)
The remaining function, F}?, is easily shown to be given by
202

F® — ~RT" (8-23)

since there is no correlation between the energies of any two mutually exclusive pairs of
cells on this simple model.

By substituting for the cell-energy fluctuation given by (8-11), the equations for the
energy integrals F$ can be written in terms of thermodynamic properties and the co-

ordination number z as follows: ‘
20?2 TC,

0 ke 4
i =—rr—7
402 1
F = 20n—TC (1—-2-),» (8-24)
2072
Ff = _‘:Z_R_T" J
We observe, on adding these equations together, that
Fp=FR4+FR+FY =—TC), (8-25)

as required by equation (7-8). In asimilar way we find that the other molecular fluctuation
integrals are given by the following formulae:

£ =—Sr— (7 7) 3)

F = ‘%? (TZ“—RT)(I—E)Q (8-26)
ne=—Sar J

T (re- )Y,

Fg:%’f; (#+pr-2) (1-1).1 (527
F,g;g=_2V2

ZRT" ; J
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These formulae are also thermodynamically consistent, since on adding the sets together
we obtain
Fy =FR+FR+F3 = RT— TVu/k, (8-28)
Fy=F24+FQLFY =V/k—PV—-W, (8-29)

in agreement with equations (7-9) and (7-13). In the next section we will use the expressions
obtained above to give a qualitative discussion of deviations from random mixing, and
in §10 they will be used to calculate the ordering effects in liquid mixtures of carbon
monoxide and methane.

The values of the molecular fluctuation integrals for the cell model, given by equations
(8-24), (8-26) and (8:27), have been calculated for orthobaric liquid argon at 90-67°K
from data quoted by Din (1956), and are presented in table 1. In these calculations we have
assumed that the Lennard-Jones indices n and m are 12 and 6, and that the co-ordination
number of the lattice is 12.

TABLE 1. MOLECULAR FLUCTUATION INTEGRALS FOR ORTHOBARIC LIQUID ARGON AT
90-67°K, RELATED TO THERMODYNAMIC PROPERTIES BY THE CELL MODEL

suffixes £7
integral I ‘ A \
(J/mole) Nid Jk kk
F2 —7371 —1323 —2565
F g‘,’ +14087 —2154 —26597
F® ' —7321 —954 —124
F, —605 —4431 —29286

In spite of the fact that the formulae for the molecular fluctuation integrals deduced on
the cell model are consistent in so far as they satisfy the thermodynamic equations (8-25),
(8-28) and (8-29), they fail the more severe test of satisfying equation (7-21). This equation
is based on a relation between the intermolecular energy function and its derivative which
holds for the particular case in which the Lennard-Jones indices are z and 47, and is exact
(see appendix B). The origin of the failure is that the cell-model approximation for the
potential energy of two wicinal molecules, equation (8-16), no longer satisfies this exact
relation, because of the linear averaging process used in deriving the cell potential. This
failure is connected with a serious weakness in any cell theory of mixtures, which makes
it impossible to achieve a consistent treatment, and which is apparent in the need for an
extra and arbitrary hypothesis specifying how the cell volume depends on the mode of
occupation of a cell in a mixture.

Nevertheless, it is of interest to see how far the numerical values of the molecular fluctua-
tion integrals given in table 1 satisfy equation (7-21). For the cell model based on the
Lennard-Jones 12-6 potential, and at zero pressure, equation (7-21) takes the form

FR—3F2 1+ 3F? = —UL(2U+RT)/zRT, (8-30)
where U} is the molar conﬁguratlonal energy at absolute zero; we note that the relation

between thermodynamic properties implied by this equation is independent of the co-
ordination number z. From table 1 we find that

F?—3F2 4 4F% = — 6869 J/mole.
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On the other hand, by using the following values derived from the data quoted by Din
(1956), U= —5755]/mole and UQ — —7730]/mole.

we get —UQ2U+RT)/zRT = —9189 J/mole.

The difference between the calculated values of the left- and right-hand sides of equation
(8-30) is therefore 2320 J/mole. This difference could, of course, be due to the inadequacy
of the Lennard-Jones potential as well as to that of the cell model. In any case, it suggests
that the calculated values of the pair fluctuation integrals are too small in magnitude, and
gives quantitative grounds for criticizing this particular application of the cell model.

9. THERMODYNAMIC FUNCGTIONS OF ORDERING

In this section we shall obtain a convenient expression for the Gibbs free energy of
ordering of a multi-component mixture, and derive from it approximate equations for the
change in free energy, entropy, heat and volume due to ordering in certain binary mixtures.

If the Gibbs free energy of ordering is broken up as follows:

G— G = }(G— ")t (G—G") p + H(G— GO, (9-1)

then, regarding the molecular fluctuation integrals as functions of temperature and pressure,
we find from equations (8-9) and (6-2) that

(G GO )ff 142 z E z E x xﬂx'yxe[(faﬂ_ *)ZG(2)+ (focy —fae) (fﬂy ~j}$‘e) (3) (9.2)
4f

By introducing starred parameter differences, defined by

eap = 2lap—Sau—T4p
Sap = 2k —kE,— Kk
Osp = oo =T 3
Pap = kaa—kpp

(akf=1,2, ...,0), (9-3)

equation (9-2) becomes
JHC— Gy = HCHTICH) X %xaxﬂ(ﬂi‘ﬁ)z‘Fi’G}? 2 ’;xaxﬂ(ezﬂ)z
+(GR+1GD) 3 > yzxaxﬂxﬁ;"ﬂe;"y—f——i—G‘}’ > Z X XpX, eXpek

<7
~HGR+GP (ZZx %pezp)®;  (94)

the /% and kk parts of the free energy of ordering, (9-1), can be obtained from this equation
by analogy. It must not be forgotten that the composition dependence of the various terms
is only apparently quadratic, cubic or quartic in the mole fractions, and is in fact more
complex, since the starred parameters also depend on composition.

We shall pause here to comment on the combinations of fluctuation integrals which occur
in equation (9-4) and its analogues, of the type

GR+1GY = FQ + 1FQ.


http://rsta.royalsocietypublishing.org/

A A

JA '\

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

A \
1~

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

STATISTICAL THERMODYNAMICS OF MIXTURES. II 239

The latter can be interpreted as the heat capacity at constant volume due to fluctuations
in the ‘private’ energies of the molecules, since by equations (6-3) we have

) @ (%—%,)* .
where U= > u (9-6)
i

is the ‘private’ energy of the ith molecule. The fk and kk analogues of equation (9-5) are

(%—%) (% —7)

F}%)+%F(f:;c)= ; %T (9°7)

and Fy+app =—3 1) =g (9-5)

where VY= —1 30 (9-9)
i*i

is the ‘private’ virial of the ¢th molecule. Since these combinations occur frequently in the
equations which follow, we shall introduce the following special symbols for them:

GY) = Fy) = FO+3FD (£, =1k). (9-10)
Returning to equation (9-4) and its analogues, and introducing the above symbols, we
find that for a binary mixture these equations may be combined to give
(G—G) = Jx(1—#) [{Ofy+ (26— 1) eh" G +2x(1 —x) (¢1)? G
+2{0%+ (22— 1) e} {PTo + (22 — 1) 5T} GR 4 4x(1 —x) ey 53, G
+{ph+ (26— 1) sty G-+ 25(1—x) (%) GRI[f% (9-11)

where x is the mole fraction of component 2. This expression is evidently negative, since
GR, G, GR and G are all negative, and it follows from equations (6-3), (9-5), (9-7) and

(9 8) that
GRGY=[GRI2, }
and GRGA= G2

When the critical constants of the components are close together, the starred parameters
Jag and k¥4 are approx1mately equal to the constant unstarred conformal parameters f,;
and (k,z—1), where k.5 = g3, (see §8 of part I). The differences ¢f;, etc., are therefore
approximately equal to the unstarred differences e,,, etc., defined by

e12 = 2f 12—
S12 = 2hyy—hyy —hyy,
012 =J11—S22
¢12 = ku—hzz-

In this case, the molecular fluctuation integrals can be taken to belong to a reference sub-
stance such that all the conformal parameters are close to unity.

(9-13)

30 VoL. 250. A,
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(a) Ordering effects in binary Lorentz—Berthelot mixtures according to the cell model

For a binary Lorentz—Berthelot mixture (see § 11 (¢) of part I), defined as one in which the
intercomponent parameters are given by

fi=rifee and g, = 3(g11+820)s (9-14)

the energy and size differences ¢,, and s,, are of the second order in 6, and ¢,,. Therefore,
dropping the suffixes 1 and 2, equation (9-11) can be reduced to the approximate form

G—G° = 3x(1—x) [(2GR + 208G + $2GR], (9-15)
where the private fluctuation integrals G, etc., are properties of the reference substance.
Since the cumulants of the higher approximations to the free energy of ordering only
involve terms of the third and higher orders in § and ¢, this equation is strictly correct to
the second order in these differences.

Proceeding now to examine the qualitative aspects of equation (9-15) when the private
fluctuation integrals are given by the cell model, we find from equations (8-24), (8-26)

and (8-27) that G = —1TCy(1+1/2),
' G = —H(TV,ap/ke—RT) (1+1/z), (9-186)
GR = —3(Hy+PV,—TVp[x,) (1-+1/z),
where the suffix zero has been introduced to indicate that a function belongs to the reference
substance at temperature 7" and pressure P. These integrals are all negative, the first and

third necessarily so. According to equation (7-16), for Lennard-Jones molecules with
indices 7 and m, the third integral can be written in the form

e ”mU0+(”+’”+1)PV (n+m)RT V/Ko]( 1) (9-17)

This is evidently the largest of the three functions (9-16), owing to the term {nmU,, in
keeping with an intuitive estimate of the importance of ordering effects due to differences
in molecular size.

The entropy of ordering at constant temperature and pressure can be obtained by
differentiating equation (9-15) with respect to temperature, and is

S—80 = Jx(1—x) [62S + 204SP + #2S], (9-18)

where, dropping the suffix zero for the properties of the reference substance,

w=3or (5,11
[E(1+T)+Tv(g:,{’2) + TV (0‘;,§V) —r|(1+3), (9:19)
S&’=—; 5 Cp+2V“+(”J;m)R (n+3) (m+3)PV +— (B(C?Zz"ZP) ](1+%)

It is not possible to predict the relative values of these coefficients without examining
experimental measurements to find the third-order derivatives of the free energy, such as
(02V/0TdP)p. However, it is reasonable to expect that the size difference coeflicient S%)
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will be large and negative, owing to the term $nmC,; this means that ordering due to differ-
ences in molecular size causes a decrease in entropy, in agreement with physical intuition.

The heat of ordering can be obtained by combining equations (9-15) and (9-18)." Since
both the excess Gibbs free energy and entropy of ordering are negative for mixtures of
molecules of different size, the heat of ordering will also be negative, and larger than the
free energy. This result is easily understood, since ordering of the molecules is due to the
lower energy of the ordered configurations.

The volume of ordering at constant temperature and pressure may be obtained by
differentiating equation (9-19) with respect to pressure, and is

V—V0 = 3x(1—x) [2V D+ 20§ VR +pV D], (9-20)
where VR =1VT? K(g 7},)2) (1 +1)\,
02P 1
(l)_ - .
W ot—l—VK(aTaV) ](1+ ) L (921)
2 .
S TN A TSP T

The coefficient Vi will be very small for liquids (and generally negative), so that deviations
from random mixing in molecules of equal size will cause very little change in volume. On
the other hand, the coefficient of the size term, V), will be large and negative. This is in
agreement with physical intuition, and means that molecules of different size take up
much more room when randomly mixed than when distributed canonically; that is, in
such a way as to minimize the free energy.

Equation (9-15) should be compared with the second-order equation for the excess
Gibbs free energy of random mixing of a binary Lorentz—Berthelot mixture, given in §11
of part I, which has the form

where the coeflicients Gy, etc., involve thermodynamic functions of the reference substance;;
for zero pressure the latter are given by equations (11:22) of part I. These coefficients are
to be compared with £alf the values of those in equation (9-15), because of the extra factor
of one-half in this equation as compared with equation (9-22). The values of the random-
mixing coefficients for orthobaric liquid argon at 90-67° K are given in table 1 of part I.
In order to appreciate the relative values of the ordering and random-mixing coefficients,
the former have been calculated forargon under thesame conditions, and aregivenintable 2.
These figures have been obtained from smoothed results for liquid argon (Din 1956;
Rowlinson, private communication) by assuming, in the absence of satisfactory measure-
ments, that the coefficient (02P/dT?), is zero, and that the configurational heat capacity
at constant volume is independent of temperature. The value of the co-ordination number
is not important in these coeflicients, and has therefore been supposed infinite. In both
tables the Lennard-Jones indices # and m have been taken to be 12 and 6. The correct
second-order coefficients for the excess mixing functions of binary Lorentz—Berthelot
mixtures can be obtained by adding the coefficients in the two tables. We note that the cell

30-2
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model does not predict any change in the signs of the coefficients, and a closer examination
shows that the qualitative conclusions reached in §11 of part I concerning the possible
kinds of behaviour are unchanged.

TABLE 2. ORDERING COEFFICIENTS FOR ORTHOBARIC LIQUID ARGON AT 90-67°K

suffixes &7
coeflicient units Nid Sk kk
3G J/mole =151 —1108 —17316
1HY J/mole 0 —1404 —8912
3TSE J/mole +151 —296 —1596
14 ml./mole 0 —7-96 —20-24

Looking first at the coefficients of the terms in 62, which determine the mixing effects
when the molecules are of equal size, we see that the free-energy coefficient is decreased by
about 3 9, below the random-mixing value, and the entropy coefficient increased by about
6%, while the heat and volume coefficients are unaltered. Thus the effects of deviations
from random mixing are small for such mixtures, as found by Prigogine & Garikian (1950)
and by Salsburg & Kirkwood (1952). However, the picture is rather different when we
come to compare the coefficients of the ¢2? terms, which determine the mixing effects for
substances with identical critical temperatures, but different critical volumes. The cell
model predicts that the correct coeflicients should all be less than the random-mixing values,
the free energy by 359, the heat by 269%,, the entropy by 129, and the volume by 189%,.
These fairly large changes are not physically unreasonable. However, it should be pointed
out that the figures depend on the assumption that (02P/d T?),, is zero, and that even apart
from the inconsistency mentioned in § 8, the use of the cell model to calculate the effect of
differences in molecular size is not satisfactory. This is because the equations for these
effects involve average values of derivatives of the intermolecular energy function, and
these derivatives are generally large for the mean intermolecular separation in condensed
phases; the average values are therefore likely to be sensitive to any approximations in the
configurational distribution function, such as the factorization implicit in the cell model.

10. COMPARISON OF THEORY WITH EXPERIMENT

In §12 of part I, the excess mixing functions of the liquid system carbon monoxide +
methane were calculated by assuming that the mixing is random and that the Lorentz—
Berthelot relations (9-14) are obeyed. This system was chosen because it is the only one which
has been carefully studied whose components appeared to obey the law of corresponding
states with sufficient accuracy to provide a good test of the theory. However, even in this
simple system, the deviations from the law of corresponding states are too large to allow
a completely satisfactory check on the theory. The results of several calculations, all based
on the random-mixing approximation, are compared with experiment in figures 7 and 8
of part I.

In this section we shall calculate the effects of deviations from random mixing in this
system, by using the cell-model expressions for the molecular fluctuation integrals. Since
the use of the cell model is an approximation of uncertain validity, it is not worth while
starting from the accurate form for the first approximation to the free energy of ordering,
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equation (9-11); instead we will use the simpler formulae, based on equation (9-15),
which are accurate to the second order in the parameter differences 6 and ¢, defined by

0= (T{—T9/T§ and ¢ = (V§—V3)/V5, (10-1)
where T%, TG and T} are the critical temperatures of the components and reference sub-
stance, and V%, V§ and V§ are the corresponding critical volumes.

The critical constants of carbon monoxide and methane are given in table 2 of part I.
Choosing argon as the reference substance (7§ = 150-7°K, V§ = 75-2ml./mole) we find
that 6= 03855 and ¢ = 0-07846.

We can now substitute the values for the molecular fluctuation integrals G, etc., and their
derivatives, given in table 2, into equations (9-15), (9-18) and (9-20), to obtain the free
energy, entropy and volume of ordering at 90-67° K. The results of these calculations for
an equimolar mixture of carbon monoxide and methane at this temperature are given in
table 3, where they are compared with the excess functions of random mixing calculated
using carbon monoxide and methane as the reference substance, and with the experimental
results of Mathot, Staveley, Young & Parsonage (1956). The estimated Gibbs free energy
of ordering is about 109, of the total, the entropy of ordering is small, and the volume of
ordering is about 209, of the total. The estimated ordering effects are therefore not negli-
gible, even in this system in which the molecules are of similar sizes. However, too much
weight should not be placed on these calculations, for the reasons given in the last section.

TABLE 3. EXCESS MIXING FUNCTIONS FOR LIQUID SYSTEM
CARBON MONOXIDE +METHANE AT 90-67°K

GE HE TSE VE
description (J/mole) (J/mole) (J/mole) (ml./mole)
calculated: random mixing (CO) 124 104 —20 —0-436
calculated: random mixing (CH,) 103 73 -30 —0-365
calculated: ordering (4) ) —16 -17 -1 —0-072
experimental 117 —_ — —0-325

-11. DiscussioNn

The treatment of mixtures presented in this paper has been preceded by the development
of the less realistic theory of regular solutions to a considerable degree of sophistication: the
random-mixing approximation and the expansion of the free-energy function are well
known in this lattice theory of mixtures (Guggenheim 1952). It is therefore natural to
enquire whether an approximation can be found for the new treatment corresponding to
the well-defined quasi-chemical approximation of the lattice theory. The latter leads to a
closed formula for the Helmholtz free-energy function which, when expanded, agrees with
the rigorous expansion as far as terms in (1/£77)3. It would be very useful if a more refined
approximation, expressible in a closed form, could be found which included the leading
ordering terms in the expansion of §2. Unfortunately, however, such an approximation
cannot exist, for the simple reason that, as we have seen, the ordering terms involve non-
thermodynamic properties of the reference substance. The most that can be hoped for are
approximations which lead to the cell theory expressions for the first few ordering terms in
the expansion. A simple approximate expression of this type has been used in a recent paper

by Scott (1956).


http://rsta.royalsocietypublishing.org/

L

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

244 W. B. BROWN ON THE

The statistical functions which occur in the general expansion of the free energy about
the condition of random mixing, and which we have called molecular fluctuation integrals,
do not appear to have attracted attention previously, except in the related expansion for
a conformal solution about an ideal reference mixture. It will be shown in a later paper
that they also occur as coeflicients in a perturbation treatment of certain systems in which
the molecular interactions are non-central, and which is based upon an unperturbed system
having central intermolecular forces. In view of their importance, these integrals are worth
further investigation. For example, it would be interesting to know the effect of relaxing
the assumption of cellular independence in the cell model, and allowing correlation between
pairs or triplets of molecules. However in this case the attractive feature of the present use
of the cell model would be lost; namely, that the assumption of cellular independence
suffices to relate the molecular fluctuation integrals to thermodynamic properties without
detailed calculations. It would, of course, be more satisfactory to calculate the integrals
from theoretical molecular distribution functions, since, as we have seen in §8, the cell
model is doomed to produce statistically inconsistent approximations; but there is not much
prospect of this at present.

The most important conclusion to be drawn from the first approximation for the ordering
effects based on the cell model, is that these effects are large in mixtures of molecules of
different size, but small in mixtures of molecules of the same size. The predicted effects for
Lorentz—Berthelot mixtures are large heat and entropy losses and a considerable volume
contraction on ordering molecules of different size. These results mean that the mixing
effects due to differences in molecular size are probably considerably less than those sug-
gested by the random-mixing approximation in part I.

APPENDIX A. DERIVATION OF STATISTICAL FORMULAE FOR THE THERMAL PRESSURE
AND ISOTHERMAL ELASTICITY COEFFICIENTS OF A PETIT CANONICAL ENSEMBLE

The object of this appendix is to derive the statistical formulae given in § 7 for the thermo-
dynamic quantities

B A .
and V2 (g If;) — 72 (glr;) Vik.

The derivative (dP/dT), is sometimes called the thermal pressure coefficient; the reciprocal
of the isothermal compressibility, 1/x, is the isothermal bulk modulus of elasticity.

The method we shall use is to differentiate the classical configuration integral for a single
substance with respect to volume and temperature. For a single substance, equation (2-1)
may be written in the more detailed form

f (N).. fex{ ALY e %(Q)}d3rl...d3rN=1. (A1)

In order to differentiate this equation with respect to volume, it is convenient to use the
well-known device of introducing a dimensionless length factor, A, and to differentiate the



http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

STATISTICAL THERMODYNAMICS OF MIXTURES. II 245

resulting integrand with respect to A. For example, if the integrand of an integral over
configuration space is Z(ry, ..., Iy; V), we find that

0 .
va... (W) ...ng’(rl,...,rN; V)dir, ... d%ry

_——L _g'__ 3N ‘ .13 3 3
—f3VfV...(N)...fV[dA{A P(ALy, ..y A3 A V)}:L:ld r,..dry.  (A2)

By applying this equation to the differentiation of equation (A 1) with respect to volume,
we get

1
PV—RT =3 f ¥ eF-0T4Q, (A3)
where 77(Q) is defined by equation (7-6), and arises from the relation

(@) =__% d%é/?l)

A=t
Equation (A 3) is the well-known form taken by the virial equation of Clausius for a petit
canonical ensemble. If we differentiate it with respect to temperature at constant volume

T a b e p g

which reduces to the formula employed in the text, namely

(@=2) (v —7)
kT )

When equation (A 3) is differentiated with respect to volume at constant temperature by
means of equation (A 2), we find that

0P =y
2 R 7
v (aV)T+PV ki st
where the function #7(Q), defined by equation (7-11), arises because

11d7 (QA)7
GOREHES TS

Equation (A 4) is equivalent to equation (7-10) in the text.

TVa/k = RT—

(A4)

APPENDIX B. DERIVATION OF THE RELATION BETWEEN THE PAIR FLUGTUATION
INTEGRALS FOR LENNARD-JONES MOLECULES HAVING 7 EQUAL TO 37

This appendix derives equation (7-21). We begin by setting out the Lennard-Jones
intermolecular energy and virial functions, given by equations (5-3):
u=—plrm+v/r,
v = um[rm—yn[r".
By eliminating  between these two equations, we get

(nuA-v)m  (mu+v)
[itm] =



http://rsta.royalsocietypublishing.org/

JA '\

/ y

A

a
{ )\
L 2

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

246 W. B. BROWN
For the particular case in which m is equal to $z this becomes
(nu+v)? = nu*(nu+2v), (B1)

where »* is the minimum value of , given by
u* = —pu?l4v.

If we now sum equation (B1) for all distinct pairsof molecules z, j and take the average over
a petit canonical ensemble, we get

33 )2y 3 (i) +3 3 (v”)z =m*(n3 Tui+23 3 oY) (B2)

i>j i>j i>j i>j i>j
The pair fluctuation integrals F@, F{? and F}? are defined by equations (6:3). Since the
terms in 7%, @v and 7”are all of order 1/ N compared with those in «2, w0 and v2, for macroscopic

assemblies we can put
Ff =3 S0P,

F—= 3 > (wivi) |3k T, (B3)

i>j

FR = —3 3 (F)0kT.

Hence, by dividing equation (B 2‘) by £7, and substituting in it from equations (B3),

(7-5) and (7-6) we get
n2F @ — 6nFR 4 9F2 = (67 —n®) (nu*[kT),

which is equation (7-21).
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